3 research outputs found

    Quantifying the impact of grain for green program on ecosystem service management: a case study of Exibei region, China

    Get PDF
    Evaluating the impact of an ecological restoration program on ecosystem services is crucial, given the role of such a program in boosting sustainable ecosystem management. This study examines the impact of one of the large-scale ecological restoration programs in China, the Grain for Green Program (GGP), on ecosystem service management in the Exibei region of China. This region is studied, as it is a key source water area with rich biodiversity and has been experiencing GGP for 20 years. To achieve the stated goal the changes of land use and ecosystem services value (ESV) and the ecosystem services scarcity value (ESSV) in the Exibei region were quantified and assessed based on remote sensing images from 1990, 1995, 2000, 2005, 2010, 2015 and field survey data. The results indicated that the expansion of construction land and the increase of water body were the dominant land use changes throughout the study period. Farmland, forestland and grassland decreased by 2.61%, 0.47% and 1.41% after the GGP, respectively. The ESV of the entire Exibei region increased slightly in response to land use change during 1990-2015, with an annual loss of 0.08% before the implementation of GGP and an annual growth of 0.03% after the implementation of GGP. Moreover, forestland was the dominant contributor to ESSV after the implementation of the GGP. Its annual growth rate was four times higher than before the commencement of GGP. The results of this study contribute to the protection of the Exibei region ecosystem, and more importantly, the future management of the ecosystem service in the hilly regions of southern China

    Ecosystem Service Response to Human Disturbance in the Yangtze River Economic Belt: A Case of Western Hunan, China

    No full text
    Ecosystem conservation is one of the core elements of sustainable development. Studying the relationship between human disturbance and the ecosystem service value (ESV) change is an urgent need for the future. The Yangtze River Economic Belt is one of the key economic strategies implemented by the Chinese government and is also a demonstration zone for ecological conservation. Western Hunan is an important ecological barrier in the Yangtze basin where different ethnic groups live together and various cultures coexist. In this study, using land-use data and spatial analysis modeling, the changes in the ecosystem service value at five topographic gradients were evaluated. Human disturbance and its spatial correlation with the ecosystem service value from 1990 to 2015 were also investigated. The results demonstrated the following: (1) the proportional area of forestland and grassland increased as the topographic gradient index increased and other types of land-use gradually decreased; (2) The ecosystem service value at middle gradients increased over the study period; but ESV of the lowest topographic gradient showed a significant decline and a substantial decrease, as well as a terrain index under 0.7970; (3) The spatial analysis of human disturbance showed that more than 90% of intense human disturbance was distributed in the area of the lowest topographic gradient where topographic features were low-altitude and low-slope, and little human disturbance was scattered at other gradients; (4) There was a significant spatial aggregation distribution between the ecosystem service value and human disturbance in western Hunan, the high disturbance and low ESV aggregation was mainly distributed in Loudi City, the area east of Shaoyang City and Zhangjiajie City all belonged to the lowest topographic gradient, and the low–high and high–high aggregations were mainly distributed in Huaihua City and Xiangxi Tujia and Miao Autonomous Prefecture. Population density and gross domestic product were the main driving factors, while topography was the main ecological factor. This study could provide additional spatial information and theoretical guidance for ecosystem service management for sustainable development in western Hunan, China
    corecore